Interactive Offline Tracking for Color Objects

Yichen Wei Jian Sun

Xiaoou Tang

Heung-Yeung Shum

Microsoft Research Asia, Beijing, China
{yichenw,jiansun,xitang,hshum} @microsoft.com

Abstract

In this paper, we present an interactive offline tracking
system for generic color objects. The system achieves 60-
100 fps on a 320 x 240 video. The user can therefore easily
refine the tracking result in an interactive way.

To fully exploit user input and reduce user interaction,
the tracking problem is addressed in a global optimiza-
tion framework. The optimization is efficiently performed
through three steps. First, from user’s input we train a fast
object detector that locates candidate objects in the video
based on proposed features called boosted color bin. Sec-
ond, we exploit the temporal coherence to generate multi-
ple object trajectories based on a global best-first strategy.
Last, an optimal object path is found by dynamic program-
ming.

1. Introduction

Online visual tracking estimates the target state forward
in time with no observations in the future. Traditional ap-
plications include surveillance and human computer inter-
faces. Most previous research on tracking have been per-
formed under the online scenario [12, 7, 13]. By contrast,
many tracking applications are offline - all video frames are
available in advance. For example, a YouTube user edits
the video before uploading, and a film maker adds special
effects into an existing video. Other offline tracking appli-
cations include event analysis in surveillance, video anno-
tation, object based video compression and video motion
capture.

Perfect tracking is hard to achieve by fully automatic al-
gorithms. When application requires high tracking accu-
racy, an interactive system that involves user inputs is often
necessary. A small amount of user assistance can help a
tracker to recover from failure. For example, the user can
specify the object state (e.g., location and size) in a few
frames, which we call keyframes.

The online tracking methods can be directly adopted
for interactive tracking in a trial-and-error way: the sys-
tem tracks the object from the first frame; the user inspects

the tracking result until it goes wrong; then the user goes
back several frames to correct the object state and restart
the tracker. This strategy has two major problems. First,
the tracker may fail frequently due to continuous appear-
ance changes, distractive objects, or background clutter. A
lot of user interaction is required and this is unfavorable
for an interactive system. Second, an online tracker does
not guarantee to connect the tracks between two neighbor-
ing keyframes consistently and smoothly, which is however,
usually required in applications. Online tracking is not de-
signed to make full use of all available information.

On the contrary, offline tracking is more suitable for the
interactive tracking task. Offline tracking [1, 10, 17, 5] is
typically formulated as a global optimization problem to
find an optimal path in the entire video. All keyframes are
taken into account and the smoothness constraint can be ex-
plicitly enforced. The tracking result can quickly converge
to what the user wants since the offline tracking works like
an optimized “interpolation”. The user can easily refine the
result at any frame and restart the optimization. Good ex-
amples include interactive feature tracking [5] and contour
tracking [1]. However, these systems are not designed for
generic object tracking.

An interactive system should respond to user’s input
quickly, e.g., a few seconds. The biggest challenge for
generic object tracking is the high computational cost re-
quired in the global optimization. In this paper, we present
an interactive offline tracking system for generic color ob-
jects. It follows the global optimization framework and is
able to run at 60-100 fps on a 320 x 240 video. Experiments
on various difficult real videos demonstrate the effective-
ness and practicability of our system.

The major contribution of this paper is two-fold. First,
we propose a three step optimization framework that ad-
dresses offline interactive tracking problem as well as an
efficient implementation: 1) fast detection in sparse video
frames; 2) multiple object trajectory tracking based on de-
tection; 3) global path optimization based on multiple hy-
pothesis. Second, we propose a novel color feature, called
boosted color bin, that is flexible and effective for generic
color objects.

1.1. Related work

Recent offline tracking works [1, 17, 5] formulate track-
ing as a global path optimization problem. Rotoscoping [1]
is keyframe-based contour tracking designed for graphics
applications. The contour tracking is cast as a spacetime
optimization problem that solves for time-varying curve
shapes based on input video and user inputs. It is difficult to
be applied to other tracking tasks. In [17], 3D curved object
trajectory segments are extracted from the video using spec-
tral clustering. Then, the occlusion and final object path are
inferred based on these trajectory segments. The trajectory
segment extraction and analysis are too slow (e.g., 1 fps) for
interactivity. The interactive feature tracking system in [5]
tracks a 20 x 20 image patch. A k-d tree is used to quickly
detect the feature and produce multiple hypotheses in every
frame. The detection can run at 100-200 fps for a 320 x 240
video. The patch based representation has limited effective-
ness on generic objects that can change pose, viewpoint,
scale and aspect ratio. The k-d tree will be very expensive to
support the patches with varying size and shape. Before the
user interaction, the k-d tree cannot be pre-computed since
the size and shape of the object is unknown. Other offline
tracking work includes: multiple hypothesis tracking [16],
and joint trajectories optimization for multiple objects[10].

Detection has been widely used in tracking, such as
SVM tracking [2], relevance vector tracking [19], and sub-
space tracking [11]. In this paper, we also use a de-
tector to quickly locate the candidate objects and reject
a large majority of non-object regions. Our proposed
boosted color bins is inspired by recent online feature se-
lection [6, 3, 9]. The works in [6, 3] classify individ-
ual pixels by selecting the most discriminative colors using
foreground/background variance ratio, or compute a com-
bination of color and local orientation histogram using Ad-
aboosting. On-line boosting [9] trains a small fixed number
of selectors instead of a large number of weak classifiers to
obtain the real-time performance.

2. System Overview

The system takes the input set of (state,observation) pairs
T = {Xk,y(Xk)}rek specified by the user in keyframes
and outputs the object states X = {x;} in all frames, by
minimizing a global cost function:

N N-1
B(X) =Y dxi,T)+ A Y s(xi,xiy1), (1)
i=1 i=1

subject to the hard constraints x; = X; for i € K. The cost
function includes a data term d(-) that measures the evi-
dence of the object state given user inputs, and a smoothness
term s(-) that measures the smoothness of object motion.
In this paper, we represent the object as a rectangle
x = {c,w, h}, where c is the center point, w and h are

the object width and height. The observation is a RGB
color histogram y(x) = {u1,...,ys} of the object, with
B (typically 8 x 8 x 8 in RGB color space) bins. The
color histogram has been proven robust to drastic changes of
the object, e.g., viewpoint change, pose variation, and non-
rigid motion. Based on this observation model, we use the
Bhattacharyya distance [7] of histograms as the data term,
d(xi,T) = BD(y(x:),¥) = 1 = 1, \/y; - §jj» where 3
can be the closest observation, or linearly interpolated from
observations in the keyframes. For the smoothness term,
we simply use the Euclidean distance function. Handling of
occlusion is discussed in in Section 4.3.

The user starts the tracking by specifying the target ob-
ject in two keyframes, i.e., the first and the last. The system
then minimizes (1) and outputs the tracking result. The user
then adds or modifies keyframes to correct or refine the re-
sult. Therefore, the optimization cost of (1) is critical to
make the whole interaction process efficient.

The bottleneck in (1) is the computation of data terms
in all frames. Even ignoring scale variations, exhaustive
search within the whole state space needs to extract the 3D
color histograms and compute the histogram distances for
all positions. The complexity in one frame is O(W H (wh +
B)), where (W, H) are the image dimensions. For a 80 x 80
object in a 320 x 240 image, the computation takes about
20 seconds, that is far below our interactive requirement.

Our system perform the optimization efficiently by three
steps that consecutively discard useless computation as
soon as possible and retain useful information. First, a
detector is used to quickly reject a large majority (about
98%) of non-object regions and locate a number of candi-
date objects in the video. The detector is based on proposed
boosted color bin features (Section 4) and trained from the
positive and negative examples in the keyframes. Inevitably,
the “true” object may be missed in a few frames due to ap-
pearance change or partial occlusion.

Second, we exploit temporal coherence of object motion
to find the missed object by a trajectory growing algorithm
(Section 5). Based on a best-first strategy, the algorithm
generates multiple object trajectories from the detected ob-
jects and maintains a few best object candidates in each
frame. The missed objects have a chance to be tracked from
other frames.

Finally, dynamic programming is used to optimize the
cost function (1) using the most reliable object candidates,
as similar in [5].

Our key observation is that, exhaustive global optimiza-
tion is too time consuming. Exhaustive detection on all
frames is very fast but cannot be made reliable enough. By
exploiting the temporal coherence, combining sparse detec-
tion and multiple trajectory tracking, we are able to develop
an efficient and effective interactive tracking system.

us)
us]

G G

(a) 13 lines in color space (b) a 1D histogram on a line

Figure 1. Color bin feature. It is the bin of a 1D histogram com-
puted on colors projected on a line in RGB color space. A color
bin feature represents the percentage of a quantized color within
the object. Itis a global statistic that is rotation and scale invariant.

3. Fast Detection using Boosted Color Bin

We present a fast detector based on simple color features.
It locates the object candidates and rejects most background
regions within the video volume.

3.1. Color bin as feature

A lot of commonly used object features depend on spa-
tial configuration of the object, e.g., template, Haar wavelet,
oriented histogram. A tracker or detector based on such
features could easily fail when the object exhibits drastic
changes of spatial structure caused by pose change, partial
occlusion, non-rigid motion, etc. These types of problems,
however, usually arise in offline video manipulation.

An interactive tracking system should use more flexible
feature and avoid such frequent failures which require more
user actions. For generic color objects, the color histogram
is rotation and scale invariant, and has been shown very ro-
bust for object tracking [7, 6, 17] |. However, as mentioned
before, computation of 3D color histograms is too slow. In-
stead, we propose simple and fast color features - color bins
of multiple 1D color histograms (Figure 1).

For a given object window, we project all pixel colors on
a set of one dimensional lines in RGB color space. These
lines have different directions and pass through the point
(128, 128, 128). In our implementation, we evenly sample
the direction by 13 lines, as shown in Figure 1 (a). Then,
a 1D (normalized) histogram of the projected values is cal-
culated on each line, as shown in Figure 1 (b). We use 8
bins for each histogram through an empirical comparison
and treat all 13 x 8 = 104 color bins as our features. They
are extracted in a short constant time for any image rectan-
gle using integral histogram data structure [15]. In the of-
fline tracking framework, since all integral histograms can
be pre-computed, the feature extraction is extremely fast.

1Of course, if there is a certain spatial configuration of the target object,
a histogram considering spatial information will be better [14, 4].

(b) detection results

ll‘l‘

(c) similarity map

(d) local minima in the similarity map
Figure 2. Detection in cluttered background. (a) two user-specified
red rectangles in two keyframes. (b) detected object centers (green
regions). (c) similarity maps using 3D color histogram distance.
Background clutter results in large ambiguous regions. (d) all local
minima (blue rectangles) of the similarity maps in (c).

3.2. Boosted color bins

Although a single color bin feature seems weak, the
combination of multiple bins can be powerful and highly
discriminative. To effectively combine these weak features,
we use Adaboosting [8, 18] to train a strong object detector

pstrong (J)) — sign(z azhz(.ﬁ) - 6)7 2)

where {«;} are linear weights and (3 is a constant threshold.
We use the basic stump decision weak classifier

1 if sz < sl
h(z) { 0 otherwise ’ @)

where x is a single color bin feature, s € {—1,1} and the
threshold 6 best separates the training examples.

A weak classifier imposes a constraint on the percent-
age of certain colors of an object, e.g., the pink color in the
object is no less than 30%. The colors of common objects

Figure 3. Frame #000 is a keyframe for training. Green regions are detected object centers. Top and bottom rows are results using the
first and the first two selected weak classifier(s). The precision is significantly improved and the object is better localized. Very large pose

variation in frame #330 is correctly handled.

usually fall in a small number of bins, and they provide the
most informative information to identify the object. The
Adaboosting algorithm sequentially selects most distinctive
color features to separate the object from the background.
We call those features “boosted color bins”.

Figure 2 shows detection results in a real video. A detec-
tor is trained using examples in two keyframes, as shown in
Figure 2 (a). The detected objects in two other frames are
shown in Figure 2 (b). In Figure 2 (c), we compute dense
similarity maps of Bhattacharyya similarity of 3D color his-
tograms by sweeping the object window in those frames in
Figure 2 (b). Due to background clutter, there are large am-
biguous regions and many local minima as shown in Fig-
ure 2 (d). Even in these difficult cases for a 3D color his-
togram, the boosted color bins work well.

Figure 3 is an example of non-rigid motion. The top and
bottom rows are detection results using the first and the first
two weak classifier(s). It could be shown that the first color
bin essentially separates the red trousers from all remaining
regions, and the second color bin separates the blue clothes.
The precision is substantially improved after adding the sec-
ond feature. This demonstrates the effectiveness of combin-
ing multiple color bins. Note that the skier upside down in
#330 is also detected. Such large pose variation will be
problematic for features dependent on the spatial configura-
tion of the object.

3.3. Training

Training samples are generated from the user specified
keyframes. For robustness to possible object variations and
to generate more positive samples, we perturb the position
and dimensions of the user specified object rectangle by
a few pixels. We also scale the object colors by a small
amount (factors from 0.8 to 1.2), accounting for possible
appearance change. We find this appearance perturbation
improves the detector performance obviously . Negative

samples are evenly sampled from the background by only
varying the position of the rectangle. On average, we gen-
erate about 1000 positive samples and 2000-3000 negative
samples per keyframe so that the training can be done in
fractions of a second.

Due to very limited training data, robustness issue must
be considered. Some color bin features are not stable due
to appearance changes, pose variation, or partial occlusion.
As mentioned above, we use a coarse discretion (8 bins) to
increase robustness. Also, a very small threshold in a weak
classifier implies an unstable bin value and we only accept a
weak classifier whose threshold is large enough (above 20%
of the average bin value). The appropriate number of se-
lected weak classifiers depends on the separability between
the object and the background and varies from 2 (for the
skier example shown in Figure 3) to 10. In all videos we
have tested, using at most 10 color bins are good enough to
achieve reasonable training errors. Although sometimes us-
ing more features can further decrease the training error, it
may cause over-fitting since the background could contain
similar distracting clutters. To avoid over-fitting, training is
terminated when the detection rate on training data is high
enough (> 98%).

4. Temporal Trajectory Growing

The detector cannot guarantee to find the true object in
all frames due to limited training data. There could also
be false detections. To handle these problems, best object
candidates are firstly found in sparse video frames based on
the detector. By exploiting the temporal coherence, object
trajectories are then grown from the initial candidates within
the video volume. During the growing process, more object
candidates are found and there are better chances to recover
the missed true objects and defeat the false detections.

Input: initial object candidates S, candidate number K
Output: best K object candidates { M;} on all frames

Initialize {M;}.
while fetch a best score state x from S until empty
for j= Frame_No(x) + 1 to N (forward)
x = MeanShiftTracker(x)
if x is very close to an existing one in M;
break.
elseif |[M;| < K
add x into the M.
else if the score of x < the worst score in M;
break.
else replace the worst one in M; with x.
end for
for j= Frame_No(x) — 1 to 1 (backward)

end while

Figure 4. Trajectory growing algorithm. MeanShiftTracker
seeks the nearest mode starting from the initial state x.
Frame_No(x) returns the frame number of the state x.

Figure 5. Trajectory growing. The red dots are initial object can-
didates in the I-frames. The blue dots are the “grown” objects.
From candidate 1, a long and smooth trajectory is grown forward
and backward. The trajectory from candidate 2 is merged in the
middle of trajectory 1 (at the red cross). Candidate 3 is a false de-
tection in background. Its trajectory terminates in the frame which
has enough better candidates.

4.1. Extraction of initial object candidates

The video frames are sparsely sampled (every 10 frame
in our implementation) and we call the sampled frames /-
Jframes. We run the detector on I-frames by sampling the
state space (the object location is sampled at an interval of
1/4 of object size, and a few discrete scales are used when
necessary). All passing states with too low Bhattacharyya
similarity score (< 0.6) are discarded.

The remaining states are then moved to nearby modes
(local minima in the state space) by mean shift [7] algo-
rithm, which is very efficient for seeking the nearest mode
in a gradient ascent way. After convergence, too close
modes are merged to generate a sparse set of initial object
candidates.

4.2. Trajectory growing

Based on a best first strategy, our trajectory growing al-
gorithm efficiently maintains K best object candidates on
each frame. The algorithm encourages the propagation of
better object candidates as soon as possible, therefore unre-
liable object candidates can be discarded quickly.

The algorithm always grows a trajectory by tracking the
currently best object candidate in the initial set forward
and backward using mean shift algorithm. The growth is
stopped in two cases: the tracked state is very close to an
existing one; or there are already K better hypothesis on
that frame.

Formally, we denote S as all initial object candidates and
M;; as the set of object candidates on ith frame. In I-frames,
M; is initialized using S. In other frames, M; is set as
empty. Figure 4 describes the trajectory growing algorithm
and Figure 5 is an illustration.

4.3. Global path optimization

Finally, only the best K object candidates in each frame
are considered and dynamic programming is used to min-
imize the cost function (1) in O(NK?) time. We take K
as a small constant so this step is very fast. We follow
Buchanan and Fitzgibbon’s approach [5] to handle occlu-
sion via adding two state transition costs into the smooth-
ness term in (1):

S(Xi7 Xi-l—l) X; and Xj41are visible
s (xiyXit1) = A/ x; and x; 1are occluded
Ao/ A otherwise

where A\, and), are penalties paid for an object enter-
ing/exiting the occlusion state and retaining the occlusion
state. We set A\, = 0.4, as suggested in [5], leaving only
Ao, adjustable for the user. The “Girl” example in Figure 6
contains multiple occlusions. After two parameter adjust-
ments (final A, = 0.18), we obtain good result using only
two keyframes.

5. Experimental Results

In all tracking results (Figure 6, 7, 8, 9), red rectangles
represent user specified objects in keyframes, yellow solid
rectangles represent finally optimized object states, and blue
dashed rectangles represents the final best K object candi-
dates.

Parameter setting and user interaction. Most parame-
ters are fixed in all experiments. The candidate number K
is 10 by default. Two parameters are adjustable for user
interaction: A € [0.001,0.02] for the smoothness term,
Ao € [0.1,0.5] for occlusion. Since the global path opti-
mization is very fast (> 5,000 fps), the user can interactively
adjust these two parameters to tune the final track path.

= &)

Figure 6. “Girl” example. Two red rectangles are specified by the user. The yellow rectangles are the final tracked object and the dashed

blue rectangles are the local mode after trajectory growing. The optimization with occlusion handling correctly labels occlusions around
the frames #018, #028, and #038. The dashed yellow rectangles are interpolated using the results entering/exiting the occlusion.

| | frames/key | object size | grow(s) | all(s) |

Girl 14172 85 x 220 23 2.7
Boy 864/3 33 x 129 7.5 8.7
Skiers 250/2 19 x 53 1.5 1.9
Man 284/5 108 x 197 4.5 52

Table 1. Timing. “key.” is the number of keyframes. “grow” is the
time for trajectory growing. “all” is the overall time.

The user interactions are invoked in two cases: 1) the
correct object is found but not on the final path. This is typ-
ically caused by background clutter. The user selects the
found object as a hard constraint and the path optimization
runs again; 2) the object is not found or not accurately lo-
cated. The user adds a keyframe where the error is largest,
and the whole algorithm restarts.

By default, object scale is linearly interpolated from two
neighboring keyframes. However, the user can enable a
multi-scale search in the detection stage (5 evenly divided
scales between two keyframes are used) if the object scale
change cannot be approximated linearly. The “Boy” exam-
ple in Figure 7 uses multi-scale detection. We set K = 20
to increase the chance that the correct scale is found.

Pre-computation Integral histogram is very fast for fea-
ture extraction but memory consuming. For a 320 x 240
image, storing all 13 one dimensional integral histograms
with 8 bins costs about 30MB. We pre-compute the integral
histograms in I-frames and store them on disk. Fortunately,
we do not need to load all of them into memory. In the train-
ing stage, only integral histograms for several keyframes are
loaded. In the detection stage, only integral images corre-
sponding to the selected color bins (no more than 10) in the
I-frames are loaded. For a 320 x 240 image, the memory
cost is 0.7MB/I-frame.

rejection rate | recall | precision
Girl 92.5% 82.6% | 82.7%
Boy 99.4% 95.1% | 71.2%
Man 94.3% 95.7% | 62.3%
Skiers 98.9% 47.1% | 18.8%

Table 2. Detection evaluations.

Timing The algorithm consists of four steps: training, de-
tection, trajectory growing, and path optimization. Both
training and path optimization takes less than one second.
The detector runs at 2000 ~ 4000 fps (200 ~ 400 fps on
I-frames), dependent on the number of boosted color bins.

The trajectory growing is the most expensive part due to
the computation of 3D color histograms in the mean shift
tracking algorithm. Its running time is proportional to the
object size and the maximum candidate number K. For a
80 x 80 object and K = 10, our system can achieve 60-
100 fps. For a larger size object, a multi-scale approach is
adopted. We first obtain an object path in the low resolution
video and then refine the path by mean-shift mode seeking
in the original resolution video. The timings of all examples
in the paper are summarized in Table 1.

Detection evaluation We evaluate our detector on video
frames (every 10) with manually labeled ground truth. A
detected rectangle is a true positive if it overlaps with the
ground truth by more than 50%. Table 2 reports rejection
rates, precision, and recall for all examples. The rejection
rate is the percentage of rejected states. It indicates the
saved time with respect to an exhaustive search. The pre-
cision is the percentage of correctly detected objects among
all detected objects. The recall is the percentage of frames
in which the true object is detected.

As observed, all examples have very high rejection rates,
which is the key to the interactive system. The example

#595 #695 #7155 #865

Figure 7. “Boy” example. The scale change of the boy is large and nonlinear. Using five scale levels and three keyframes, our approach
produces good tracking result, with occlusion in #595 and #695 correctly handled.

#000 #040 #070(detection) #070

#100 #160 #190 #249

Figure 8. “Skiers” example. We independently track three skiers in each row. The first and last frames are keyframes. Three skiers with
similar appearances move and occlude each other, and the background contains many similar colors and patterns. Although our detector
outputs many false positives and the true object is not detected in some frames, e.g., frame #070 in the third column (green regions are
detected object centers), the trajectory growing and global optimization successfully track the skiers.

“Skiers” shown in Figure 3 is difficult due to similar objects
and background clutter. In fact, we have trained a detector
using all frames with ground truth. The detector’s preci-
sion is only 35% (of course, the recall is 100%). This indi-
cates the intrinsic difficulty of this example. Although only
half of the true objects are detected, our system works well
thanks to the trajectory growing which recovers missed true
objects from other correctly detected ones.

Comparison In the “Man” example in Figure 9, the ap-
pearance of the target object (the man with a white suit)
changes dramatically due to lighting and pose variations.
There are also objects (woman and stones) with similar
color in the background. We compare our interactive tracker
and a online mean-shift tracker [7] on this difficult example.

The online mean shift tracker quickly drifts after tracking
a few frames. After a large drift is observed, we step back
a few frames, correct the result, and restart the tracker. The
top row of Figure 9 shows several frames with large drifts
during tracking. Even when we restart the tracker more than
ten times, the tracking results are still jaggy, because the
online tracker cannot guarantee a smooth track transition

between neighboring keyframes.

In middle and bottom rows of Figure 9, we show our of-
fline tracking results using 3 and 5 keyframes. Usually, the
keyframe is added where the error is largest. As we can see,
adding a small number of keyframes results in substantial
improvements as a result of the global optimization. The re-
sults are consistently tight and smooth. The whole process
takes about one minute. To achieve the same quality results
using the online tracker, we need to restart the online tracker
20-30 times, which takes about five minutes.

We have also applied bi-directional tracking [17] on this
example. Using 5 keyframes, bi-directional tracking can
produce a result of the same quality. But the trajectory seg-
ment extraction and analysis requires many 3D histogram
extractions and spectral clustering, which are computation-
ally intensive - about 0.5 fps in our implementation. The
interactive feature tracking [5] cannot be directly applied
since we are not able to pre-compute the k-d tree before
the user interaction. One can imagine using multiple small
fixed size patches to represent an object. However, this rep-
resentation is sensitive to the change of appearance struc-
tures and slows down the detection by several times.

> #110=> #156 =>
mean shift tracking results, manually restarted from last failure

#000 => #012 => #050 => #068 =

Our results using 5 keyframes #000, #050, #130, #190, #283

Figure 9. “Man” example. The top row is the intermediate tracking results by an online mean shift tracker. To successfully track the man
with the white suit, the user has to restart the tracker when the tracking drift is large. Here we show several drifted results after restarting
the tracker. For example, the 4th column is the drifted result in frame #124 using the restarted tracker from the frame #068. The user
needs to go back a number of frames to restart the tracker when a large drift is observed. This video requires more than ten restarts and the
final results are still jaggy. The middle and bottom rows are our tracking results using 3 and 5 keyframes. The offline tracking produces
better results and requires a smaller amount of user effort.

6. Conclusion [7] D. Comaniciu, V. Ramesh, and P. Meer. Real-time tracking
of non-rigid objects using mean shift. In CVPR, 2000.

We have presented an interactive offline tracking system [8] Y. Freund and R. E. Schapire. A decision-theoretic general-
for generic color objects. The tracking is performed via an ization of on-line learning and an application to boosting. In
efficient global optimization framework. The system can In Computational Learning Theory: Eurocolt 95, 1995.
obtain high quality results for difficult videos in a short time [9] H. Grabner and H. Bischof. On-line boosting and vision. In
and is useful for offline tracking applications. CVPR, 2006.

We focused on color feature in this paper. It is interest- [10] M. Han, W. Xu, H. Tao, and Y. H. Gong. An algorithm for
ing to investigate whether combining other features, such multiple object trajectory tracking. In CVPR, 2004.
as Haar wavelet or oriented histograms, can improve the [11] J. Ho, L. K., M. Yang, and D. Kriegman. Visual tracking
detector performance. Another future work is interactive using learned linear subspaces. In CVPR, 2004.
multiple object tracking. [12] M. Isard and A. Blake. Contour tracking by stochastic prop-

agation of conditional density. In ECCV, 1996.

[13] A.D.Jepson, D.J. Fleet, and T. El-Maraghi. Robust, on-line
appearance models for vision tracking. In CVPR, 2001.

[1] A. Agarwala, A. Hertzmann, D. Salesin, and S. Seitz. [14] P. Pérez, C. Hue, J. Vermaak, and M. Gangnet. Color-based

Keyframe-based tracking for rotoscoping and animation. In probabilistic tracking. In ECCV, 2002.
SIGGRAPH, 2004. [15] F. Porikli. Integral histogram: A fast way to extract his-

[2] S. Avidan. Support vector tracking. In CVPR, 2001. [16] ggglm; 1n/:art;3s1ag;pacfes. In iVPR’ 2?951' IEEE
. . . Reid. na gOI'lt m for trac ng mu tlp (] targets.
3] S. Avidan. Ensemble tracking. In CVPR, 2005. Tran. on Automatic Control, 24(6):843-854, 1979.

References

[4] S. T. Blrchﬁeld.and S. Rangara})an. Spatiograms versus his- [17] J. Sun, W. Zhang, X. Tang, and H.-Y. Shum. Bi-directional
tograms for region-based tracking. In CVPR, 2005.
o o tracking using trajectory segment analysis. In /CCV, 2005.
[51 A M. Bgchanqn and A. W. Fltzglbbop. Interactlye fea- [18] P. Violaand M. Jones. Robust real-time face detection. IJCV,
ture tracking using k-d trees and dynamic programming. In 57(2):137154, 2004.
CVPR, 2006.

[19] O. Williams, A. Blake, and R. Cipolla. A sparse probabilistic

[6] R. T. Collins and Y. X. .Liu. On-line selection of discrimina- learning algorithm for real-time tracking. In]CCV, 2003.

tive tracking features. In /CCV, 2003.

